Progression in Calculation

Addition	Subtraction	Multiplication	Division
Children are encouraged to develop a mental picture of the number system in their heads to use for calculation, using a variety of concrete resources including songs and rhymes to develop this process			
Through practical activities they begin to combine objects and develop ways of recording calculations using pictures, photos etc.	Through practical activities they begin to understand the concept of taking objects away and develop ways of recording calculations using pictures, photos etc. They use numberlines and practical resources to support calculation and teachers demonstrate the use of the numberline. Bead strings or bead bars can be used to illustrate subtraction. They will work on practical problem solving activities.	Children will experience equal groups of objects. They will count in different steps e.g. 2's They will work on practical problem solving activities involving equal sets or groups	Children will understand equal groups and share items out in play and problem solving. They will count in different steps e.g. 2s
They use numberlines and practical resources to support calculation and teachers demonstrate the use of the numberline.			
Bead strings or bead bars can be used to illustrate addition.			
$8+1=9$			
They will work on practical problem solving activities involving addition.			

KS1 Transition

Children will begin to order touch counting to prepare for bar modelling.

```
cugeg의ᄂ.L
```

If ready, progressing to drawing a bar to show a calculation.

Children then begin to use numbered lines to support their own calculations using a numbered line to count on in ones.

$$
2+3=5
$$

Children will be shown that addition can be done in any order.

They will work on practical problem solving activities involving addition.

Children then begin to use numbered lines to support their own calculations - using a numbered line to count back in ones.

The number line should also be used to show that 5-3 means the 'difference between 5 and 3' or 'the difference between 3 and 5 ' and how many jumps they are apart.
$2 \times 3=6$
Children will represent multiplication as an array with the support of the teacher

$$
3 \times 2=6
$$

They will work on practical problem solving activities involving equal sets or groups.

Problem Solving and Reasoning.

This is a mastery curriculum, therefore all children must be reasoning at their level.
Children will continue to use cubes to begin bar modelling but will progress to representing a bar model.

They will progress to drawing Base 10 to support mental calculations;

To support mental strategies, children will become more efficient by adding the tens together first.

$$
\begin{gathered}
32+21= \\
30+20=50
\end{gathered}
$$

Then adding the ones by using their knowledge of the commutative law

$$
\begin{gathered}
2+1=3 \text { or } 1+2=3 \\
50+3=53 \\
32+21=53
\end{gathered}
$$

Children will increase their knowledge of written methods though the use of column addition.

$5 \times 3: 5+5+5$

They will progress to drawing Base 10 to support mental calculations:

$$
\| \mid \circ g
$$

32 - 11 21

To support mental strategies, children will subtract the tens first.

$$
\begin{gathered}
32-11= \\
30-10=20
\end{gathered}
$$

Then subtracting the ones.

$$
\begin{aligned}
2-1 & =1 \\
20+1 & =21 \\
32-11 & =21
\end{aligned}
$$

Children will increase their knowledge of written methods though the use of column numicon.

Repeated subtraction using a bead bar
$12 \div 3=4$

Children will continue to show multiplication as an array to reinforce the commutative law. Children should know that 3×5 has the same answer as 5×3.

```
0 0 0 0 0
00000 3\times5=15
00000
```

$5 \times 3=15$

This can also be shown using

mimmin
 maysudily

Using symbols to stand for unknown numbers to complete equations using inverse operations

$$
\square \div 2=4 \quad 20 \div \triangle=4
$$

$\square \div \triangle=4$

Problem Solving and Reasoning.
This is a mastery curriculum, therefore all children must be reasoning at their level.

Children will continue to develop confidence using bar method to represent simple addition calculations. Children will then progress to using bar models to find inverse relationships.

In Year 2, children will be introduced to Cuisenaire rods. They will begin building simple bar models.

With addition \& subtraction problems there are three possible unknowns \& you can represent them with bars

Children will complete simple addition and subtraction problems eg.
Tom has a bag of 64 marbles. His friend gives him 28 more.
How many does he have now?
Kelsey was running a 26 mile marathon. After 18 miles she felt very tired. How many more miles did she have to run?
Children will begin to use Cuisenaire to support multiplication/ division and fraction understanding.

$$
\begin{aligned}
& 1 \times 8 \\
& =4 \times 2 \\
& -2 \times 4 \\
& -8 \times 1
\end{aligned}
$$

Addition	Subtraction	Multiplication	Division
Children will continue to use informal pencil and paper methods (jottings) to support, record and explain partial mental methods building on existing mental strategies. Children will continue to draw tens and ones and will develop strategies to bridge 10. Making another stick of ten from the available ones to support bridging ten. Children will progress with column addition.	Children will continue to use informal pencil and paper methods (jottings). \checkmark Partitioning and decomposition - Partitioning - demonstrated using arrow cards - Decomposition - base 10 materials NOTE When solving the calculation 89-57, children should know that 57 does NOT EXIST AS AN AMOUNT it is what you are subtracting from the other number. Therefore, when using base 10 materials, children would need to count out only the 89.	Children will continue to use: Repeated addition 4 times 6 is $6+6+6+6=$ 24 or 4 lots of 6 or 6×4 Children should use bead bars to support their understanding. Arrays Children should be able to model a multiplication calculation using an array. This knowledge will support with the development of the grid method.	Ensure that the emphasis in Y3 is on grouping and using arrays rather than sharing. $8 \div 2=4$ Children should also move onto calculations involving remainders using grouping to support. $13 \div 4=3 r 1$ Using symbols to stand for unknown numbers to complete equations using inverse operations $\begin{array}{lr} 26 \div 2=\square & 24 \div \triangle= \\ 12 & \square \div 10=8 \end{array}$

\begin{tabular}{|c|c|c|}
\hline Adding the least significant digits first \& This would be neconded by the children os
\[
$$
\begin{aligned}
& -7 x+4 \\
& -40+6 \\
& -20+5=25
\end{aligned}
$$

\] \& \begin{tabular}{l}
$9 \times 4=36$

$9 \times 4=36$

Using symbols to stand for unknown numbers to complete equations using inverse operations
$x 5=20$

$\times O=32$

$\checkmark \quad$ Partitioning

$$
\begin{aligned}
38 \times 5 & =(30 \times 5)+(8 \times 5) \\
& =150+40 \\
& =190
\end{aligned}
$$

\end{tabular}

\hline
\end{tabular}

Problem Solving and Reasoning.

This is a mastery curriculum, therefore all children must be reasoning at their level.
Children will continue to use bar models to support addition/ subtraction/ multiplication and division. Children will continue to use Cuisenaire rods to support alongside drawing their own bar models.

Eg

Addition and Subtraction:
Carly bought an apple for 17 p and a banana for 26 p.
How much has she spent?
Ali had $£ 10$. He bought a DVD for $£ 6.70$ and a CD for $£ 2.90$.
How much money did he have left?
Multiplication:
Children should begin to use bar models to explain answers and make links between multiplication and division.

Peter has 4 books
Harry has five times as many books as Peter.
How many books has Harry?

How might you represent the problem?

Using similar methods,
children will:
$\checkmark \quad$ add several numbers with different numbers of digits;
$\checkmark \quad$ begin to add two or more three-digit sums of money, with or without adjustment from the pence to the pounds;
\checkmark know that the decimal points should line up under each other, particularly when adding or subtracting mixed amounts, e.g. $£ 3.59+78 p$.

	Children will continue to use arrays where appropriate leading into the grid method of multiplication. $(6 \times 10)+(6 \times 4)$ $60+24$ 84 \checkmark Grid method	Children will develop their use of repeated subtraction to be able to subtract multiples of the divisor. Initially, these should be multiples of $10 s, 5 s$, $2 s$ and $1 s$ - numbers with which the children are more familiar. $72: 5$ Moving onto:

Problem Solving and Reasoning.

This is a mastery curriculum, therefore all children must be reasoning at their level.
Children should build on prior knowledge to use bar models to explain how to find an answer to a problem, focusing on multiplication, division, fractions and percentages.

Bob's got a 25 cm bit of wood and saws it into 5 equal pieces. How long's each bit?

Or, in another context, what's $1 / 5$ of 25?
(Or 2/5, 3/5 etc)

5	5	5	5	5

	numbers with different numbers of digits; begin to find the difference between two decimal fractions with up to three digits and the same number of decimal places: know that decimal points should line up under each other	 Using similar methods, they will be able to multiply decimals with one decimal place by a single digit number, approximating first. They should know that the decimal points line up under each other. e.g. 4.9×3 Children will approximate first 4.9×3 is approximately $5 \times$ $3=15$	up or down accordingly. They should make sensible decisions about rounding up or down after division.

Problem Solving and Reasoning.

This is a mastery curriculum, therefore all children must be reasoning at their level.

Addition	Subtraction	Multiplication	Division
Children should extend the carrying method to number with any number of digits. Using similar methods, children will $\checkmark \quad$ add several numbers with different numbers of digits; $\checkmark \quad$ begin to add two or more decimal fractions with up to four digits and either one or two decimal places; \checkmark know that decimal points should line up under each	Decomposition $\begin{array}{r} 3161 \\ -\quad 2467 \\ \hline 2684 \\ \hline 3783 \end{array}$ Children should: $\checkmark \quad$ be able to subtract numbers with different numbers of digits; $\checkmark \quad$ be able to subtract two or more decimal fractions with up to three digits and either one or two decimal places: \checkmark know that decimal points should line up under each other.	ThHTO $\times 0$ (Short multiplication multiplication by a single digit) 4346×8 Children will approximate first 4346×8 is approximately $4346 \times 10=43460$ HTO \times TO (Long multiplication multiplication by more than a single digit) 372×24 Children will approximate first 372×24 is approximately	Children will continue to use written methods to solve short division TO \div O and $\mathrm{HTO} \div \mathrm{O}$. Long division $\mathrm{HTO} \div \mathrm{TO}$ $972 \div 36$ Any remainders should be shown as fractions, i.e. if the children were dividing 32 by 10 , the answer should be shown as $3^{2} / 10$ which could then be written as $31 / 5$ in it's lowest terms. Extend to decimals with up to two decimal places. Children should know that decimal points line up under

other, particularly when
adding or subtracting mixed amounts, e.g. $401.2+26.85+0.71$.

Problem Solving and Reasoning.

This is a mastery curriculum, therefore all children must be reasoning at their level.

By the end of year 6, children will have a range of calculation methods: mental and written. Selection will depend upon the numbers involved. Children should not be allowed to go onto the next stage if:

- They are not ready.
- They are not confident.

Children should be encouraged to approximate their answers before calculating. Children should be encouraged to consider if a mental calculation would be appropriate before using written methods.

